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The motion of a spherical drop in a gradient unsteady flow of viscous liquid moving in the magnetic 

field of a spatially non-uniform electric current flowing through the liquid, which contains drops and 

which generates Lorenk vortex forces, is considered. Tbe conductivity of the drop differs from that of 

the carrying liquid, in view of which each drop produces a local non-uniformity in the electromagnetic- 

field distribution, which has a considerable effect on the flow around the drop. A formula is obtained 

for the force acting on the drop using the method of solving Stokes equations containing vortex 

volume forces [l]. In existing publications (a bibliography is given in [2]) the effect of a uniform electric 

current on the hydrodynamic streamline pattern and the drag when there is uniform flow around 

particles is investigated. 

1. FOR mw magnetic Reynolds number R,,, the system of equations of magnetohydrodynamics, 
which describes the motion of a homogeneous liquid in the natural magnetic field of constant 
electric currents flowing through it, supplied from an external source, has the form 

divu=O, p@u/&+(uV)u]=-Vp+pAu+c-‘jxH+pg 

mtH=4m-‘j, divH=O, rotE=O, j=oE 

(1.1) 

(1 .a 

Here II is the velocity, p and p are the density and the pressure, H and E are the magnetic and 
electric fields, g is the acceleration due to gravity, u and o are the dynamic viscosity and the 
conductivity, and c is the velocity of light. In view of the smallness of R,,, we can neglect the 
difference in the electric fields in frames of reference moving relative to one another. In 
writing Eqs (1.1) a fixed rectangular Cartesian system of coordinates x1, x,, x, is used. We will 
consider the case of a spatially non-uniform distribution of the current density i, so that the 
Lorentz forces have a vortex form [2]. Henceforth H(x), E(x), u(x, r),p(x, t), x=(x,, x2, x3) 
will mean the solution of the specific problem formulated for the system of equations (1.1) and 
(1.2). 

Suppose that at a certain instant of time, drops of an immiscible conducting liquid are placed 
in the flow considered. Neglecting the hydrodynamic and electromagnetic interaction of the 
drops we will calculate the force acting on an individual drop. To do this we will use the 
approach employed in ordinary hydrodynamics when calculating the forces acting on a particle 
in a gradient flow at low Reynolds numbers, characterizing the motion of the liquid relative to 
the particle [3]. 

We will denote the trajectory of the centre of gravity 0 of the drop considered by x = X(f) 
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and we will introduce a moving rectangular system of coordinates ei = xi -Xi (i = 1, 2,3) with 
origin at the point 0, which, together with the drop, performs translational motion with 
velocity V =dXldt. In this case, the flow of the liquid, considered with respect to the non- 
inertial system of coordinates &, c2, 5, (the relative motion) is described by the equations 

d.iV uk =o, ,.@u,/&+(u,V)u,]= 

= -VP, + &Au, +(4x)-’ rot H, x H, + pk(g - fl / dt), k = 1.2 0.3) 

Quantities with the subscript 1 relate to the drop, and those with subscript 2 relate to the 
carrying liquid. The equations for the fields H, and E, are similar to (1.2). After eliminating 
E, and E, from these equations we obtain 

M, =o, diVH, =o, k= 1,2 (1.4) 

Suppose r is the surface of the drop, and T& e2, t3, t) = 0 is its equation. The following 
kinematic, dynamic and electromagnetic conditions are satisfied on the surface r 

iQ/ib+lV~~lul~=O, u1=u2, pit’=p$. pE)-pE=cxdivn (1.5) 

H, = H,, o;‘(rot H,), =.a,’ (rot H,), (1.6) 

where pn = p&r+, pii is the hydrodynamic part of the stress tensor, 3i are the vectors of the 
basis of the system of coordinates &, g2, !&, n = niBi is the unit vector of the outward normal 
to r, and a is the surface tension coefficient; the subscripts n and z denote the components of 
the corresponding vectors normal and tangential to r. The following conditions are satisfied 
far from the drop 

l&a + 00: u,-+u-V, H,-+H (1.7) 

where a is the characteristic size of the drop. 
When there is no drop the equations of relative motion of the liquid have the form 

divu=o, p2[&J/&+(UV)U]= -VP +p2AU + (41~)~' rot H x H + p2(g - dv / dr) (1.8) 

where U(& t) = u(x, t) - V(t). Suppose I is the characteristic scale of the distance over which the 
velocity U and the magnetic field H undergo considerable changes; then, naturally, E = a/Ml. 
We will assume that the characteristic relative velocity U. is small, so that the Reynolds 
number R constructed with respect to U. and with respect to the length a is small. 

The magnetic fields and the distributions of the hydrodynamic parameters outside the drop 
will be sought in the form 

H, =H+h,, k=1,2; u2 =u+v, p2 = P+q (1.9 

The scale of the distance over which a considerable change in the perturbations of 4, v and 
q Occurs, is determined, in order of magnitude, by the dimensions of the drop. Substituting 
(1.9) into (1.3) and taking (1.8) into account, we obtain after neglecting quantities of the orders 
of R,eR, R,,=p,u.al& 

divv=o, p,av/at=-vq+p.,AV+& 

+2 = (4n)“(rot H2 x h2 + rot h, x H) 
(1.10) 

Inside the drop in the Stokes approximation, we have 
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div uI = 0, plaul I at = -VP, + l.~,Aui f rF1 + ~1 (g - fl/ @ 

ql =(4x)-’ rot H, x HI 
(1.11) 

The equations for the perturbations of the magnetic field produced by the drop retain their 
initial form (1.4) 

A&=0, divht=O, k=1,2 (1.12) 

It is assumed that the drop is spherical at the instant it is placed in the liquid. Later, a non- 
uniform distribution of the normal component pk of the stress vector is formed on its surface 
when the drop moves, which changes the initial form of the drop. When there is no electro- 
magnetic field, in the case of steady-state motion of the drop in a liquid at rest, for low 
Reynolds and Weber numbers, the surface-tension forces under the last dynamic condition 
(1.5) considerably exceed the non-uniformity of the distribution of the normal stresses, in view 
of which, the departure of the shape of the drop from a sphere is small f4]. When calculating 
the forces acting on the drop using the unsteady Stokes equations (a bibliography can be found 
in [5]) we will neglect the deformation of the spherical drop. In the case considered we will 
assume that the condition We = p2U%/a=Sl is satisfied, and we will ignore the deformation of 
the drop in view of its smallness. 

We will introduce a spherical system of coordinates r, 6, q, with pole at the point 0: 
5, = rsin@cosqr, 5, = rsin$sincp, 4, = rsin& Neglecting the departure of the form of the drop 
from a sphere r = a, the boundary conditions (1.5) and (M), taking (1.9) into account, can be 
written in the form 

Uln = 0, u, = -u,o, u,, -v, = uq (1.13) 

glaul, far+.~$Y~ /ar= fj.tl -j12)dul,+ U* = WW 
h, = h,, @(rot h, 1% - @(rot I& = (6;’ - 0;’ )(rot I&,x f, (1.14) 

On the right-hand sides of the second and third boundary conditions (1.131, and also in the 
second condition (1.14) we have omitted small quantities of the order of E. Substituting (1.9) 
into (1.7) we obtain 

r/a-+-: v+O, h,+O (1.15) 

We will assume that at the initial instant of time, the liquids are at rest 

t=o: u1 =o, v=o, u=o, v =o (1.16) 

IIence, a ~lc~at~on of the ~~~batio~ of the hy~~yna~e and magnetic fields caused by 
the drop reduces to solving problem (1,10)<1.16). Naturally, only bounded solutions with 
bounded derivatives have any physical meaning. 

2. When calculating the force F acting on the drop, we need to take into account the action 
of the carrying liquid and of the electroma~etic field 

F = F, ~ F, ; FI = I p~*‘da. F, = f T,‘2’da, T” = rt;)ini (2.1) ,=&I ?=#a 

qi = ~4~)-‘~~ir~j - J$ H26i,.); 8~ = 1 when i = ,!, $ = 0 when i #j 

In the approach used here pia can be written in the same way as the re~~nta~on of the 
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hydrodynamic field (1.9) 
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P!?‘=“ii+Xii; "ij=-PSii+~2 (+I ( */ 
t 

au. aus\ 
35j %i) 

so that the first term in the expression for the force 
formula, to the form 

“ij 

(2.1) can be converted, using Gauss’ 

F~ = Fp + F,‘; Fp = I (-VP+~L~AU)~, 
&(I 

F: = f ~,d~, X, = “ii3i”j 
r=(1 

We can similarly convert the second term 

Fm=$ I [(H,V)H, ] -;VH; &=& j rotH, xH&=Fz +F,!, 
PC0 rQa 

F;=& j rotHxH&, FL=& ] (roth, xH, +rotHxh,)& 
&a rca 

(2.2) 

As a result, when the equation of relative motion of the liquid (1.8) is taken into account the 
formula for the force (2.1) can be written in the form 

F=F’+F)+F;; F”=FP+F:=p2 ] 
,<~~~+$)-8Idr (2.3) 

The expression in parentheses is the acceleration dddt of a particle of the liquid with respect 
to the fixed system of coordinates x;, x,, x,. Neglecting the change in dldf in the region of 
integration, we obtain 

F” =+@_-g) 

This expression is identical in form to that obtained in [3], but here the acceleration dddt 
depends on the distribution of the Lorentz forces in the liquid. 

To calculate the force F,!,, produced by the perturbation of the electromagnetic field caused 
by the drop, we need to obtain a solution of problem (1.12), (1.14) and (1.15). When 
constructing the solution we will use [6] vector spherical harmonics P,,J6, cp), B,,,,,(fi, cp), 
C,(% 0) 

P mn = I&a,. Y,, = e im’P,m(cos19); m=O,l,..., n; n=0,1,2 ,*.. 

with angular functions D”,(I~, (p) (a = 1, . . . , 6), which form a complete orthogonal system on 
the sphere 

D1, = ,/mC&, DL = ~~[~=B:,,+l + mP;,,+1 1 

D5, = J;;&iB:,n-l -&P&I 1 

Here a, is the unit vector along the coordinate line r, the superscript e denotes the real parts 
of the corresponding expressions, and the superscript 0 denotes the imaginary parts. The 
expressions DL, Dk, Dt are obtained from Dh, Da, Dm by replacing e by 0. 

The unperturbed magnetic field, which occurs in the boundary conditions (1.14), has the 
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following representation in the neighbourhood of the point 0, apart from quantities of small 
orders in rll 

A = 2m-‘($Df, + j;D;, + j;Dil) (2.4) 

Ei =J$(W; /aXj +aHj /aXi),=,, Ho = H(X), j” = j(X) 

Feds the ~lution of problem (1X), (1.14) and (1.15) in the form of the sum of solenoidal 
partial solutions of Laplace’s vector equation [6], which is expanded in the same system of 
vector spherical harmonics as the expression in square brackets on the right-hand side of (2.4), 
we obtain 

ht = (w - l)tA, hz = (K - l)a3r”A, K = 3o, /(al + 2~3%) (25) 

Using expressions (2.4) and (2.5) we can calculate Fi, and also the density of the Lorentz 
forces vi inside the drop and the perturbation of the Lorentx forces vz in the carrying liquid 
produced by the drop. Confining ourselves to the principal terms of the expansions with 
respect to the small parameter r#, we have 

$, =$$j~,~~(~-l)f~, f” =c-‘j” xH” 

~l~ =ti”, J1* =21t(~-l)c-*(u/~)~H~ x(j/‘D& + jiD;s + jtD&) 
(2.6) 

In the approximation considered rot \fil = 0, whereas rot J12 # 0. 

3. The method described in [1] for solving boundary-value problems for the steady Stokes 
equations containing vortex volume forces is difftcult to generalize to the unsteady case. Using 
this method, the velocity field is constructed in the form of an expansion in angular functions 
D”,, while the pressure field is constructed in the form of an expansion in spherical functions 
Y;, PM. In the Stokes approximation, to calculate the force acting on the drop in a flow of a 
viscous incompressible liquid, only the terms of the expansion conta~g D& D:,,, Df,,, Ya, 
Y;;, e make a non-zero contribution [l]. In the expansion of the velocity field, to satisfy the 
boundary conditions on the surface of the drop, we must also take into account terms con- 
taining the angular functions Vm, D’,, D$, which are expressed in terms of the same vector 
spherical harmonics Pot, B,,, rl, BE,, F$, Bfl as D&, D:,, D& In the case considered of the 
steady Stokes equations, the parts uf, pi (k= 1, 2) of the hydr~~a~~ fields (oil pJ, 
(v, q), sufficient, using (2.2), to calculate the force 

(3.1) 

must be sougbt in the form 

vi = rot rot wk, pi = @,A-pJ/dt)divwk (3.2) 

wk = x,, (r,W:, f x,&AD;‘, + x,,kOD& + 

+Y~I (dD:z + yrz WJ% + y&W% (3.3) 

By substituting (3.3) into (3.2) we obtain the following form of the required part of the 
hydrodynamic fields 
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%i~Y,)= &3,(x, f&i) -!(2++), i=],2,3 

a2 2 a 0+1) n_012 
4 =g+--z -7 -+* 

The equations, boundary conditions and initial conditions for vi, pP; are naturally identical 
with (l.lO), (l.ll), (1.13), (1.15) and (1.16). Substituting the representations (3.2) and (3.3) into 
these expressions and expanding & +pI(g-dvldt), J1* in series in the complete system of 
angular functions, we arrive at the following problems 

(3.4) 

(3.5) 

r=a: T(xli,Y*i)-S(x,i.Y,i)=O, T(X2~*y2i)-S(*,i*y2j)=~U~ 

2IT(x~i~Y~i)-T(x~i,Y~i)1+S(~~i,Y2i)-S(~,~,Y*i)=3U~ 

P2 $[2T(x,i.Y~i)+S(x,i,Y*j)~-~~ ar E~2T(x*i,Y~i)+S(x,i,Y,i)l= 

=~~2T(x,i,Y,i)+S(X,,,Xi)l 

r/a+ =: TCxzi,Y2i)+Ov S(X,ieyzi)+O 

t=o: Xb =o, yh.=o 

(3.6) 

The right-hand sides of Eqs (3.4) and (3.5) are the coefficients in the expansions of JI, + 
Q,(g-aV/dt), q2 in front of the same angular functions with which the required functions X, 
and yki occur in representation (3.3). Reverting to (2.6) we obtain 

aii=ISfF+P1(gi_dV,/dt), a,i=%a3(K-l)f;:o, i=1,2,3 

Using a Laplace transformation with respect to time, we obtain solutions of the operator 
problems corresponding to Eqs (3.4) and (3.5) and boundary conditions (3.6). The transform 
t(7Q at the surface of the drop (with r = a), calculated using these solutions, has the form 

U~~(a.%rp,r)l=2;; Pz ([12+ es+3s(es)(~-3)]L(u~)- 

-3rz_s(es)(~+3)1L(uf)}-~f~; e=$- (3.7) 
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S(&) = M3cv + 2P2YW 
CLJW) + cl2rWes + 3) ’ 

Q!!E, * - PZPl 
B Plk 

p(X)=hchh(6+i*)-3shX(2+h2), y(3L)=shh(3+A2)-33cchh 

where s is the parameter of the Laplace transformation. Integrating (3.7) over the surface of 
the drop and carrying out an inverse Laplace transformation, we obtain 

F; = 2xup2(3p~ + 2p2) (u[X(f) , 
PI +cL2 

+6m~2 ; 11 
0 

(3.8) 

Here It(tlO) is the original of the transform 

K, (0s) = $ E s(es)(& + 1) -. 3k4 + 2P2 
3(k + cL2) 1 

Graphs of the function rc-‘1,(tlCl), obtained numerically for different values of the parameters 
p1/p2, B are given in [5]. In the approximation considered, as in the case of solid particles 121, 
the readjustment of the flow in the region of the drop due to the electromagnetic field has no 
effect on the drag of the drop. Passing to the limit in (3.8) as p, /pz + 0, p, = const we can 
obtain an expression for the force in the case of a solid particle. 

Using (2.6) and (3.8) we obtain the overall force of electromagnetic origin, acting on the 
drop 

F, = ICU~(K- l)f” (3.9) 

When the current distribution in the carrying liquid remains unchanged (when there is no 
drop), F, reverses its direction on changing from case o, > 6, to case CT, < a,. 

We will consider briefly the problem of the electromagnetic force acting on a non- 
conducting (a, = 0) drop, around which an electric current flows in a conducting liquid. The 
magnetic field inside the drop is quasi-steady, so that, with sufficient accuracy, we can use the 
equations 

rotH, =0, divH, =0 (3.10) 

whereas the magnetic field H, in the carrying liquid is described by Eqs (1.4). Unlike the case 
when cxl +O only the first condition of (1.6) is imposed at the surface of the non-conducting 
drop-the requirement that the magnetic field should be continuous. Here, the continuity of 
the tangential component of the magnetic field at the drop surface, together with the first 
equation of (3.10), automatically ensures that the normal component of the current density 
vanishes when r = a. 

After calculating the magnetic fields, following the procedure described above as it applies 
to a non-conducting drop, we obtain F, =-m3f0, i.e. Eq. (3.9) can be used both for a con- 
ducting drop and for a non-conducting drop. 
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